
DTIC
SELECTE 1

AD-A267 505S AGi3

ETVERITA

Fast Algorithms for Polynomial
Interpolation, Integration and Differentiation

DTIC QUALI

A. Duttt, M. Gut and V. Rokhlint

Research Report YALEU/DCS/RR-977
July 1993

D -93-17333_1111111-111111111! I 1IIII 1111 11111l1111lilllilllI

YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

93 8 3 050

For functions tabulated at Chebyshev nodes on an interval, spectral interpolation, integration and
differentiation can be performed stably and efficiently via the fast Fourier transform. In this paper,
a group of algorithms is presented for the efficient evaluation of Lagrange polynomial interpolants
at multiple points on the line, and for the rapid spectral integration and differentiation of functions
tabulated at nodes other than Chebyshev. The interpolation scheme requires O(N • log(i/E))
arithmetic operations, and O(N . log N + N . log(1/e)) operations are required for the integration
and differentiation schemes, where e is the precision of computations and N is the number of
nodes. The algorithms utilize efficient versions of the fast multipole method which have been
designed specifically for one-dimensional problems; these are also described in the present paper.
Several experiments are included to illustrate the numerical performance of the approach.

ACce.ion For

LNTIS CRA&M

DTIC TAB D
U1ilnou•iced Q1JustfihCotll, f

Ely

Distribution I

Availability Codes

Avail andi or
Oi 3 t SSpec ial

-\ I

Fast Algorithms for Polynomial
Interpolation, Integration and Differentiation

DTIC QUALITY INOPEglED 3

A. Duttt, M. Gut and V. Rokhlint

Research Report YALEU/DCS/RR-977
July 1993

i The work of this author was supported in part by the Office of Naval Research under grant
N00014-89-J-1527 and in part by the National Science Foundation under grant DMS9012751.
t The work of this author was supported in part by U.S. Army Research Office under grant DAAL03-
91-G-0032.
Approved for public release: distribution is unlimited.
Keywords: Polynomials, Interpolation, Fast Multipole Method, Approximation Theory

1 Introduction

Polynomials form the theoretical basis for many areas of applied mathematics. While the
mathematical properties of polynomials have been quite well understood for over a century,
attempts to use them in practical calculations have met with difficulties. Typical problems
accompanying the employment of classical schemes are those of prohibitive computational cost

and numerical instability. However, certain classes of orthogonal polynomials do have stable,
fast transforms associated with them, the most popular being Chebyshev polynomials which
can be manipulated in a stable and efficient manner via the fast cosine transform or FFT.

In this paper we present a group of three algorithms for the interpolation, integration
and differentiation of functions tabulated at nodes other than Chebyshev. The first of these
algorithms takes as input a set of points, {z,. . ., 2N}, and a set of function values, {f,.. ., fN},

and evaluates the unique interpolating polynomial of degree N - 1 at the points {yj,..., YN} for
a computational cost proportional to N. The other two algorithms perform spectral integration
and differentiation of this interpolant. We will also describe three efficient versions of the Fast
Multipole Method (FMM) for one dimensional problems; these algorithms are used by the
polynomial interpolation algorithm of this paper. Throughout this paper we will be using
the well known Lagrange representation oF interpolating polynomials which is defined by the
formula

N N
=1 k,-i J X-- Xkj=1 k--1

A simple algebrair manipulation converts (1) to the form

N N h (2)

PN(X)=Hl(x -xk). - E I (2
k=1 j=lx-i k=j - k

k96i

which can be evaluated at N points in

0 (N -log (i)(3)
arithmetic operations using the Fast Multipole Method (FMM) of [10] (e here is the desired
accuracy). In comparison, a direct evaluation of (2) requires O(N 2) operations.

Remark 1.1 A somewhat different classical polynomial interpolation problem consists of de-
termining a set of parameters {fl,..., aN} such that, for j = 1,..., N,

N

xak'ZJ =hf (4)
k=1

where {xi,...,xNI is a given a set of points and {fi,..-.,fN} is a given set of function val-
ues. This problem is highly ill-posed for anything other than very small values of N and this
formulation is seldom used when actual calculations are being performed.

I

Remark 1.2 The Lagrange interpolation formula has traditionally been less favored for prac-
tical calculations than other classical methods (see, for example, [14]). However, the algorithms
of this paper are numerically stable and very efficient, as demonstrated by our numerical ex-
periments, thus affording the Lagrange formula a substantial advantage over other techniques
for the manipulation of polynomials.

Following is a plan of the paper. The first three sections are devoted to efficient versions of
the FMM which can be used to evaluate expressions of the form (2): Section 2 contains a number
of results from analysis which are used in the design of these algorithms, in Section 3 we present
the FMM algorithm itself, and in Section 4 we present an adaptive version of this algorithm.
A Fast Polynomial Interpolation algorithm utilizing the results of the previous sections is then
described in Section 5, and in Section 6 we describe how this algorithm is used to construct
fast algorithms for spectral integration and differentiation. In Section 7 we present the results
of several of our numerical experiments, and finally, in Section 8 we list several generalizations
and conclusions of the results of this paper.

2 Mathematical and Numerical Preliminaries

The algorithms of this paper are based on several results from the Chebyshev approximation
theory of the function 1/1. This analysis is presented in the Lemmas and Theorems of this
section, numbered 2.1-2.10. The main results of this section fall into two categories: Theo-
rems 2.5 and 2.7 describe how the function 11z can be approximated on different regions of
the real line using Chebyshev expansions, and Theorems 2.8, 2.9 and 2.10 provide three ways
of manipulating these expansions which are needed by the fast algorithms of this paper.

We begin with three classical definitions which can be found, for example, in [8], [14].

Definition 2.1 The n-th degree Chebyshev polynomial, T,,(z), is defined by the following for-
mulae:

Tn(x) = cos(narccosz), (5)

Tn(x) = 2 T2+_. \ 1)n+-zV(T- /2/- -)n) (6)

Definition 2.2 The Chebyshev nodes {ti,... , tn} of order n on the interval [-1, 1] are defined
by the formulae

tk= - cos (- • (7)

for k =1,...,n.

Definition 2.3 ul..., u,, will be a set of polynomials of order n - 1 defined by the formulae

u,(t) = nJtJ, (8)ki t -tk
k$j

forj = 1,...,n, where tk are defined by (7).

2

For a function f : [- 1, 1] - C, the order n - 1 Chebyshev approximation to f on the interval
[-1, 1] is the unique polynomial of order n- 1 which agrees with f at the nodes t,. . . ,ttn. There
exist several standard representations for this polynomial, and the one we will use in this paper
is given by the expression

nE 'f(ti) " uj(t). (9)

j-=1

For the purposes of this paper, Chebyshev expansions for any function will be characterized by
values of this function tabulated at Chebyshev nodes.

Lemmas 2.1-2.3 provide estimates involving Chebyshev expansions which are used in the
remainder of this section. The proof of Lemma 2.1 is obvious from (5).

Lemma 2.1 Let T,(x) be the Chebyshev polynomial of degree n. Then,

IT(X)I < 1 (10)

for any z E [-1, 1].

Lemma 2.2 Let Tn(x) be the Chebyshev polynomial of degree n. Then,

ITn(-)l > •- .1F(1

for any z such that Ixl > 3.

Proof. From Definition 2.1, we have

IT,(x)l =

> -. Ix T /2 _ (,/3)21n =12. Ix.- (1 + V8'9)I" (12)

> 3

for any x such that 1l >: 3. 0

Lemma 2.3 Let u3 (z) be defined by (8). Then, for any x E [-1,11,

luj(x)I_< 1. (13)

Proof. It is obvious from (8) that ui(ti) = 1, and that uj(tk) = 0 when k 0 j. In addition,
the expression

E Tk(tj) . Tk(X) (14)
n k=1

3

is also equal to 1 at ti and equal to 0 at all other tk. Since both uj and (14) are polynomials
of order n - 1, we have

1 n

Uj()= - Tk(tj) • Yk(() (15)
nk=1

for j = 1,..., n. Furthermore, due to the combination of (15) and the triangle inequality, we
obtain

1 -- 1

1 nk=i n k=i

for any z E [-1, 1]. El

The following lemma provides an identity which is used in the proof of Theorem 2.5.

Lemma 2.4 Suppose that n > 2, and that b > 0 and xo are real numbers with Izol > 3b. Then,
for all z,

I (X ZO).~b T = 1,/b) (17)1 z o) bj-x zo uj =Tn(zo./b)"
j=1

Proof. Let Q(x) by the polynomial of degree n defined by the formula

Q(x) =1- (z - zo).E btj -- -- (

Using (8) we obtain

Q(btk) = 1-(btk - xo). Ubt-
j=1 l -X

1
- 1-(btk - o)- b - Xo = 0, (19)

for k - 1,..., n. Clearly, then, Q(z) satisfies the conditions

Q(zo) = 1
Q(bti) = 0

(20)

Q(btn) = 0.

It is clear that the function T,,(xb)/Tn(xo/b) is also a polynomial of degree n which satisfies

the n + 1 conditions (20). Therefore,

T(= I /b) (21)
Q~)-T.(xolb)'

and (17) follows as an immediate consequence of (18) and (21). 13

4

Theorem 2.5 Suppose that n > 2, and that b > 0 and xo are real numbers with Ixol > 3b.
Then,

.1 1 1< 5(22)
F-X bti xo b.(X

for any x E I-b, b].

Proof. Due to Lemma 2.4, we have

1 n 1 1 ~ x X, ITn(X/b)I (23)
z- XO _bt, xo * T 0- IT.(xo/b)l"

Also, due to Lemmas 2.1 and 2.2, we have

ITn(x/b)I < 1 (24)

for any x E [-b, b], and 1 .15XO0I 5-
IT(o/b)l > 2 3b I> "-(25)

for any IxoI > 3b. It follows from the combination of (23), (24) and (25) thatI11 1 g ~ (t--xO U <1 2-• 1•b (26)

for any x E [-b, b]. 0

The following lemma provides an identity which is used in the proof of Theorem 2.7.

Lemma 2.6 Suppose that n > 2, and that b > 0 and xo are real numbers with Ixo <_ b. Then,
for all ý,

n ti =3b T_(_)_(27S-(3b - ýxo)" . 3b .'j0 uj(ý) = L T(237)o
j=1 3lb. - t xO Tn(3b/xo)(

Proof. Let Q(t) be the polynomial of degree n defined by the formula

n tj . uj•).(28)Q(ý) f - (3b - ýxo). n3b - t28)

j=3b -

Using (8) we obtain

Q(tk) = tk - (3b- tkxo) " 3 b-tj j(tk)

E b-tixo
tk-(b-tx)- tk - , (29)

= tic -(3b~-itko)" 3b- tkxo

5

for k = 1,..., n. Clearly, then, Q(ý) satisfies the conditions

Q(3b/xo) = 3b/xo

Q(t1) = 0
(30)

Q(t,) = 0.

It is clear that the function 3b T,,(ý) (31)

zo Tn(3b/xo)

is also a polynomial of degree n which satisfies the n + 1 conditions (30). Therefore,

3b T.(t) (32)
zo Tn(3b/xo)'

and (27) follows as an immediate consequence of (28) and (32). 0

Theorem 2.7 Suppose that n > 2, and that b > 0 and xo are real numbers with Jx0o _< b.
Then,

X Z ~ 3b -- 'tixo "u b.5

for any x such that lxi > 3b.

Proof. Writing • = 3b/x, we have Iti _ 1 whenever lxi Ž_ 3b, and

1 1 t (34)
z-'o 3b/l - xo 3b - t

Due to Lemma 2.6, we have

n t '1 3b 17n(0,
3b..-,txoZ~ _ Eu~ =j 13bO - i- ~ i (35)

bj=13b--tjx0 13bi--fx0 l ITn(3b/xo)l"

In addition, due to Lemmas 2.1 and 2.2 we have

3b. IT,(ý)I S< 3b (36)

for . E [-1,1], and
xo) l 5 .3bIn 5n'b (37)I~~o" T1(bz~ -ý-.o > > 2

for Ixol < b. Substituting (36) and (37) into (35), we obtain

Sn t j 1 3b.1 2 3 (38)
3b-ýx0 .= 3b -'tzuj() < 2b 5n. b . 5(38)

6

for t E [-1, 1]. Now it follows from the combination of (34) and (38) that

1 _n t . (j3b) < 3
X 0 E3b-tix0 T (39)

=

The following three theorems provide formulae for translating along the real axis Chebyshev
expansions of the type described in the previous two theorems. Theorem 2.8 provides a formula
for translating expansions described in Theorems 2.5, Theorem 2.9 describes a mechanism of
converting the expansion of Theorem 2.5 to the expansion of Theorem 2.7, and Theorem 2.10
provides a way of translating the expansion of Theorem 2.7. These theorems axe one-dimensional
counterparts of the three theorems in [10] which provide translation operators for multipole
expansions in the complex plane.

Theorem 2.8 Suppose that n > 2 and let c,d be a pair of real numbers such that [c-d,c +d] C
[--1, 1]. Then, for any set of complex numbers %I,. .. , 1,Q, and any x E [c - d, c + d],

V- jui(x) = E(ik -'uj(c +dtk))'-uj -d (40)

j=1 k=1

Proof. To prove this theorem we first show that

u E(x) = Z uj(c +dtk).uk (41)
k=1

for x E [c - d, c + d]. Indeed, the right hand side of (41) is simply the (n - 1)-th degree Lagrange
interpolating polynomial for the function uj(x) at the nodes c+dtl,...,c+dt,. However, uj(z)
itself is a po!ynomial of degrf n - 1, and is therefore equal to its Lagrange interpolant of order
n--1.

The formula (40) then follows as an immediate consequence of (41). 03

Theorem 2.9 Suppose that n > 2 and let c, d be a pair of real numbers such that Icl - d > 3.
Let the function f : R - C be defined by the formula

N
c= k (42)

k=1 X -

where xk E [-1,11 for k = 1,...,N, and C11... ,aN is a set of complex numbers. Further, let
ti,.. ., tn be Chebyshev nodes defined by (7), let 01,. .. , ot be a set of complex numbers defined
by the formula

44 =) (43)

7

for k = 1,..., n, and let i......, 'Pn be a set of complex numbers defined by the formula

V = _ c -`dtk (44)

Then, for any x E [c - d, c + d],

f~x) qA; j (xd c)< A .5n(45)
k=i b. 5

where A = EN=I lakl.

Proof. Due to the triangle inequality,

•51+52,j (46)
k= 1

where
S, = f(X) E f f(c + dtk) .Uj X , (4 7)

k=1

and

S2 = (f(c + dtk)-'Ik)" TO . (48)

Combining Theorem 2.5 with the triangle inequality we obtain

S, < A (49)

and from the combination of Theorem 2.7, Lemma 2.3 and the triangle inequality, we obtain

S2 Z f (c +dtk)- , 4*j (+uj 3 3An (50)k~l j~l c -+'dtk < b- 5-'

where A = 1 JkIt. Finally, substituting (49) and (50) into (46) we have

-<A* 3 n1t. (51)

for any x E [c-d,c+d d. 0

Theorem 2.10 Suppose that n > 2 and let c, d be a pair of real numbers such that [c-d, c+d] D
[-1,11. Let the function f : R -- C be defined by the formula

N

Ok (52)
k=1 -

8

where Xk E [--1,1] fork = 1,...,N, and a 1,...,QN is a set of complex numbers. Further, let
,.,t,, b Chebys..ev nodes defined by (7), let ti,.. ., n be a set of complex numbers defined

by the jormula

tk~fy (53)

for k = 1...., n, and let ij,..., 4,n be a set of complex numbers defined by the formula

= nd• ctk (54)
j=1

Then, for any x such that Ix - cl > 3d,
f(X 4k _ 3d)l 3(n.+ 1)

f~x)-(-!-) I <a .A• (55)

k=1
.5

where A = N laki.

Proof. It follows from the triangle inequality that

f()_:4k - .Uj (3d S + S2 (56)
k=1l

where
n

and

Combining Theorem 2.7 with the triangle inequality, we obtain

$, < 3A' (59)

and from the combination of Theorem 2.7, Lemma 2.3 and the triangle inequality, we obtain

: Ift (3d+3d)Ctk) 3A n
S2 E (c~ -t~ ~ (60)

k=1 j=l d+c, 5

where A = 1 lakj. Finally, substituting (59) and (60) into (56) we have

n3(n+1)
f(X)-_ k'uj (3d A .(n+ (61)

k=1

for any x such that lz - c(> 3d. 0

9

3 The Fast Multipole Method in One Dimension

In this section we consider the problem of computing the sums

N

Ij = N Q(62)

k=1 Yj -2A

for j = 1,..., N, where {lX,..., XN} and {Iyl,..., yN} are sets of real numbers, and {Ia, .. ,aN}
and {fi,. .., fN} are sets of complex numbers. This problem can be viewed as the special case
of the N-body problem in physics where we wish to evaluate the electrostatic field due to N
charges which lie on a straight line at a set of points on this line.

Remark 3.1 For the remainder of this paper, we shall assume without loss of generality that
xi,yj E [-1,1] for i = N.

Remark 3.2 The fast multipole algorithm of [101 computes sums of a more general form than
(62) in O(N) arithmetic operations. This more general form is described by the formulae

N

f E ak (63)
A:=, Wj - Zk

for j = 1,...,N, where {ZI,...,ZN} and {Wi,...,WN} are sets of complex numbers. From a
physical viewpoint, this corresponds to the evaluation of the electrostatic field due to N charges
which lie in the plane. While the two and three dimensional scenarios for the N-body problem
have been discussed in some depth (see, for example, [4], [10]), the analysis and applications of
one dimensional problems appear to have been largely overlooked, with one exception of which
we are aware: the application of FMM techniques to various problems in numerical linear
algebra (see (11], [12]).

In this section we present an O(N) al~orithm for the one-dimensional problem which is based
on the two-dimensional FMM, but incorporates a number of modifications which accelerate the
scheme significantly. We summarize these modifications below, with the assumption that the
reader is familiar with [10].

1. Replacement of all complex by complex multiplications with real by complex multiplica-
tions.

2. Replacement of multipole expansions with Chebyshev expansions. Chebyshev series are
known to converge more rapidly than multipole expansions (which are actually Taylor
series).

3. Further compression of the Chebyshev expansions by a suitable change of basis (see Sec-
tion 3.4). Using this technique, the function 1/: can be accurately represented by about a
quarter of the number of coefficients which were required by the original two-dimensional
FMM.

10

4. In one dimension, each subinterval has 3 other subintervals in its interaction list, whereas
in tT a dimensions each box has 27 other boxes in its interaction list.

5. In one dimension, each subinterval has 2 nearest neighbor subintervals, whereas in two
dimensions each box has 8 nearest neighbor boxes.

This section is divided into four parts. Sections 3.1-3.3 are devoted to an algorithm for the
FMM in one dimension which uses Chebyshev expansions in place of multipole expansions. In
Section 3.4, we describe a more efficient algorithm which is based on the algorithm of Section 3.3
but uses a Singular Value Decomposition to further compress the Chebyshev expansions.

Remark 3.3 The algorithms described in this paper are all designed for evaluating sums of
the form

N ak
f0Z)- (64)

However, these algorithms are only mildly dependent on the choice of kernel, i.e. they can be
modified to evaluate expressions of a more general form, given by the formula

N

f(z) Zak - O(Z-Xk), (65)
k=1

where 0 is singular at 0 but smooth everywhere else. Examples of functions with this property
include O(z) = log(x), O(z) = 1/x 2 and 46(x) = 1/tan(x).

3.1 General Strategy

We will illustrate by means of a simple example how Chebyshev expansions can be used to
evaluate expressions of the form (62) more efficiently. We will also give an informal description
of how the method of this simple example is used in the construction of a fast algorithm for
the general case.

First we introduce a definition which formalizes the notion of well-separated intervals on
the real line. This is simply the one-dimensional analog of the definition of well-separatedness
in [10].

Definition 3.1 Let {zl,...,XN} and {yl,..., yM} be two sets of points in R. We say that the
sets {fx} and {yi} are well-separated if there exist points xo, Y1o E R and a real r > 0 such that

Ixi-zol<r V i=l,...,N,
[yi-yol<r V i=l,...,M, and (66)
Ixo - yoI > 4r.

Suppose now that {z 1,.. ., xN) and {fyl,..., 3/M} are well-separated sets of points in R (see
Figure 1), that {cf,..., N} is a set of complex numbers, and that we wish to compute the
numbers f(yi),..., f(yM) where the function f :R . C is defined by the formula

N
foo)= 1: kxk (67)

k=1

11

> 2P

Z1z2 ... ZN Y11Y2 ... YM' : : = *I I ' • tIj

xo - r ZO zo-r yo - r YO yo + r

Figure 1: Well-separated intervals on the line.

A direct evaluation of (67) at the points {yj,...,yM} requires O(NM) arithmetic opera-
tions. We will describe two different ways of speeding up this calculation.

Following is the first of these approaches.
Let the function A R --+ C be defined by the formula

N P ________ U(3r'~(8
El(x) = aGk -E 3 r - tj(xk - Zo) " ' (68)
k=--I j=_

where p is an integer and tl,.. .,tP and ul,. . ., up are given by Definitions 2.2 and 2.3.

Observation 3.4 From the combination of (67), (68), Theorem 2.7 and the triangle inequality,
we see that

-f(._)- <ak (69)

for any x such that Im - zol > 3r.

Now let {l, .-. , eb} be a set of complex numbers defined by the formulae

k= N t) (70)kS=1 C k" 3r-tj(.Tk - ZO)

for j = 1,...,p. Then,

11(-T) -- E j -"uj (. rZ (71)

j=1

The vector 4' will be referred to as the far-field expansion for the interval [xo - r, zo + r].
Computation of the coefficients ti requires O(Np) operations, and a subsequent evaluation

of f (yi),..., f1(1yM) is an O(Mp) procedure. The total computational cost of approximating
(67) to a relative precision 1/5P is then O(Np + Mp) operations.

An alternative way of speeding up this calculation is described below.
Let the function 12 : R,--* C be defined by the formula

N P 1 (. ' (72)
1 2 (X) = : a t-k-y) X -1Lk•')=1 =, r"" ,tj - (Xk - YO) ' uj '(2

k=l j=l

where p is an integer and t,..., and ul,...,uP are given by Definitions 2.2 and 2.3.

12

level

0 I I
1 I I I
2 I I I I
3 I II I I I I

Figure 2: Hierarchy of subintervals.

Observation 3.5 From the combination of (67), (72), Theorem 2.5 and the triangle inequality,
we see that

for any x such that Ix - yol < r.

Now let { Tp,..., 1P} be a set of complex numbers defined by the formulae

zP=)ak 1aL. = 1 k (74)
kT i rtj - (Zk - ZO)(

for j = 1,...,p. Then,

2 (-T) = , tj . (Ts(
j=1

The vector 19 will be referred to as the local expansion for the interval [yo - r, yo + r].
Computation of the coefficients Ti requires O(Np) operations, and a subsequent evaluation

of f2(YI),... , f2(ym) is an O(Mp) procedure. Again the total computational cost of approxi-
mating (67) to a relative precision 1/5P is O(Np + Mp) operations.

Consider now the general case, where the points {XI, - XN} and fYi,.-.., yM} are arbitrar-
ily distributed on the interval [-1,1] (see Remark 3.1). We use a hierarchy of grids to subdivide
the computational domain [-1,1] into progressively smaller subintervals, and to subdivide the
sets {fi} and fy,} according to subinterval (see Figure 2). A tree structure is imposed on this
hierarchy, so that the two subintervals resulting from the bisection of a larger (parent) interval
are referred to as its children. Two Chebyshev expansions are associated with each subinterval:
a far-field expansion for the points within the subinterval, and a local expansion for the points
which are well-separated from the subinterval. Interactions between pairs of well-separated
subintervals can be computed via these Chebyshev expansions in the manner described above,
and all other interactions at the finest level can be computed directly. Once the precision has
been fixed, the computational cost of the entire procedure is O(N) operations (for a detailed
description and complexity analysis, see Section 3.3).

13

3.2 Notation

In this section we introduce the notation to be used in the description of the algorithm below.

"* p will be an integer denoting the size of Chebyshev expansions used by the algorithm.
Normally, p = [- log 5(e)], where e is the desired precision of computations.

" ti,... , t. will denote Chebyshev nodes of order p on the interval [-1, 1], defined by the
formulae

t =cos ((76)

for i = 1,...,p.

"* uj(t),... ,up(t) will denote the set of polynomials defined by the formulae

ut(t) - tk (77)

k--I j -t
k~j

for j=1,...,p.

" s will be an integer denoting the number of points in each subinterval at the finest level
of subdivision. Normally, s •, 2p (see Remark 3.6).

"* nlevs = P9og 2(N/s)1 will denote the level of finest subdivision of the interval 1-1,1].

"• -0, will be a p-vector denoting the far-field expansion for the subinterval i at level 1.

"* Li will be a p-vector denoting the local expansion for the subinterval i at level 1.

"* ML and MR will be p x p matrices for obtaining far-field expansions for subintervals in
terms of the far-field expansions of their children. These will be defined by the formulae

ML (i,jA = (t

MR(i,j) = Uj (- tiD (78)

which are obtained from the formula (54) of Theorem 2.10 applied to the cases
c= -1,d= 2 and c = 1,d= 2.

" SL and SR will be p x p matrices for obtaining local expansions for subintervals in terms
of the local expansions of their parent. These will be defined by the formulae

SL(i, j) = (t i2-i1)1

SR(i, j) = U.(ti 11) -(79)

which are obtained from the formula (40) of Theorem 2.8 applied to the cases
c= -½,d=1 and c = e I,d = -1

14

* T1 , T2, T3 and T4 will be p x p matrices for obtaining local expansions from far-field
expansions. These will be defined by the formulae

TI (i, j) = uj i3 6

T2(i, j) = Uj i3 4

T3(i,jA = j (3~) (80)

T4(0~) = Uj

which are obtained from the formula (44) of Theorem 2.9 applied to the cases
c= -6,d-= 1, c-= -4,d= 1, c =4,d= 1 and c =6,d= 1.

3.3 Description of the Algorithm

Following is a formal description of an algorithm for the efficient evaluation of expressions of
the form (62).

Algorithm 3.1
Step Complexity Description
1 0(I) Comment [Input problem size, N, and a real number c > 0.]

Set size of Chebyshev expansions p = r- log5(c)j, choose s and set level of refine-
ment nlevs = [og2(N/s)1.

2 O(Np) Comment [Determine far-field expansions for subintervals at finest level.]

do i = 1,..., 2nlevs

Compute p-term far-field expansion $nlev,,i due to the subset of {zj}
which lie in subinterval i at level nlevs.

enddo

3 0(2Np2/s) Comment [Determine p-term far-field expansions for each subinterval at every
level by shifting and adding far-field expansions of the subinterval's children.]

do I = nievs-1,...,1
do i = 2'

0,1, = ML '01+1,2i-1 + MR • 01+1,2i
enddo

enddo

15

4 0(8Np2 /s) Comment [Determine p-term local expansions for each subinterval at every level
by first shifting local expansion of the subinterval's parent, and then adding the
interactions with the three subintervals which are well-separated from the subin-
terval, but which have not been accounted for at the parent's level.]

do I = 1.,nlevs- 1
do i= 1,...,21

%1+1.2i-I = SL •i',i + T1 - Za+1, 2i- 3 + T3 • $I+1,2i+1 + T4 • 4h+1,2i+2

*1+1,2i = SR" I',i + T1 4D'+1,2i-3 + T2 - 4I+1,2i-2 + T4 - 4'I+1,2i+2
enddo

enddo

5 O(Np) Comment [Evaluate local expansions for subintervals at finest level.]

do i = 1,...,2 M"ews

Evaluate p-term local expansions ,InIev,,i at the subset of {yj } which lie
in subinterval i at level nlevs.

enddo

6 O(3Ns) Comment [Add nearest neighbour interactions which have not yet been ac-
counted for via expansions.]

do i = 1,...,2nzevs

For each Yk in subinterval i at level nlevs, compute interactions with all
zj in subintervals i - 1, i, i + 1, and add to well-separated values.

enddo

Total O(N . (2p + 10p2/s + 3s))

Remark 3.6 The number s can be chosen to minimize the total operation count of the algo-
rithm, which yields s ; 2p. The above algorithm then requires order

13- N p (81)

arithmetic operations.

Remark 3.7 The operation count for Step 6 assumes that the points {zI,... , ZN} are reason-

ably uniformly distributed. Highly non-uniform distributions are discussed in Section 4.

3.4 A More Efficient Algorithm

Chebyshev expansions are not the most efficient means of representing interactions between well-
separated intervals. All the matrix operators of the algorithm are numerically rank-deficient,
and can be further compressed by a suitable change of basis. The orthogonal matrices required
for this basis change are obtained via singular value decompositions (SVDs) of appropriate
matrices.

In this subsection we describe a more efficient version of the one dimensional FMM which is
based upon this observation. The algorithm is very similar to Algorithm 3.1 with one important

16

modification: separate changes of basis are needed for interactions from the left and interactions
from the right, so for every subinterval we maintain two sets of expansions, leftward expansions
and rightward expansions.

Remark 3.8 SVDs can also be used for the efficient representation and application of much
broader classes of smooth linear operators (see Section 8).

We will require some additional notation for the algorithm description of this section. The
following denotations use the notation of Section 3.2.

1 5 will be an integer denoting the numerical rank of the operators to be compressed.

* tf will denote the j-th Chebyshev node of order p on the interval [0,1], and tR will denote
1 3

the j-th Chebyshev node of order p on the interval [-1, 0].

* UL and VL will denote p x 5 matrices, each of whose columns forms an orthonormal set,
and E will denote a P x p diagonal matrix such that

IIULEV[V - MLII < -IIML1x, (82)

where
1 (83)•,(ij) =3/tý- - ti'

for i,j - 1,... ,p. UL and VL are used to compress leftward expansions, and UL VET is
effectively the numerical SVD of ML.

UR and VR will denote p x p matrices, each of whose columns forms an orthonormal set,
such that

IIUREVR - MR11 < E. IIM II, (84)
where

rMR(i,j) = 3 1 '
(85)

for ij = 1,...,p. An examination of the matrices ML and MR reveals that UR and UL
are closely related, and VR and VL are closely related. UR and VR are used to compress
rightward expansions, and UREVT is effectively the numerical SVD of MR.

* elfand elRf will be j.vectors denoting respectively the left and right far-field expansions
for subinterval i at level 1. These will be defined by the formulae:

•,j,L = U t,

Il = Uj. t,,. (86)

L 'i and Iii will be p-vectors denoting respectively the left and right local expansions for
subinterval i at level 1. These will be defined by the formulae:

, = vL.
Ili VL - 1P

IlR vr• ,.. (87)

17

LM, ML, MR' and MR will be P x × matrices for obtaining left and right far-field expan-
sions for subintervals in terms of the left and right far-field expansions of their children.
These will be defined by the formulae

ME = UJ " ML UL,

ML -= U['MR'UL,

ML• = UJ. ML-UR, (88)

MR = UT . MR UR.

*SLL, SJL, SLR and SR will be P x P matrices for obtaining left and right local expansions for
subintervals in terms of the left and right local expansions of their parent. These will be
defined by the formulae

SE = V/.SL.VL,

Sh = VI. SR. VL,
sLI = VRT. SL .VR, (89)
S R= =VT . SR . VR.

"* TIL and T2L will be p x p matrices for obtaining left local expansions from right far-field
expansions. These will be defined by the formulae

TjL = V[.T 3 .UrL,

T2L = VI.T 4 .UL. (90)

" T1" and T2R will be ji x p matrices denoting for obtaining right local expansions from left
far-field expansions. These will be defined by the formulae

T1R = VT.T 2 .UR,

T2P = V. TI .UR . (91)

Following is a step-by-step description of a modified version of Algorithm 3.1.

Algorithm 3.2
Step Complexity Description
1 0() Comment (Input problem size, N, and a real number r > 0.)

Set size of Chebyshev expansions p = [- log5(c)j, choose ji, choose s and set level
of refinement nievs = [log2(N/s)l.

2 O(2NP) do i = 1,...,2nzevs
Form a p-term left far-field expansion §'lev,,
Form a P-term right far-field expansion tReu,.*

enddo

18

3 O(4NP9/s) do 1 = nlevs -1,..., 1
do i= 1,...,2

qtL ~ML §L +ML. §L
L •t1,2i-l + I,2li sML L MR '11•,2i

MR §1+12i1 + .R i+,2i
enddo

enddo

4 O(1ONP2 /s) do - 1,.. .,nlevs - 1
do i -1 2+

,R _ = R S %R + +TR. §L
i+1,2i-1 - L I,i I 1+1,2i--3 + .L+L _RL. *RL + TLR R. +TL.

euddo1+1,2 I , 1i+1,2i-2 2
"1+11,2i -- 'R " ,i - I-1 "Y÷ ,2- r 1+1,2i-3

enddo
enddo

5 O(2NP3) do i = 1,..., 2"'-
Evaluate and add left and right i-term local expansions %L + %R

enddo

6 O(3Ns) do i = 1 n...., 2"'"'
For each point in subinterval i at level nlevs, compute
interactions with all other points in subintervals i - 1, i, i + 1,
and add to far-field values.

euddo

Total O(N. (4f + 14p2/s + 3s))

Remark 3.9 We can choose s to minimize the total operation count of the algorithm, which

yields s _- 2p. The above algorithm then requires order

17- N - (92)

arithmetic operations.

Remark 3.10 The results of our numerical experiments indicate that, for a fixed precision e
and corresponding p, p (the numerical rank of the matrix operators to be compressed) is approx-
imately p/2. This condition together with (81) and (92) leads us to expect that Algorithm ;s.2
will require about two-thirds of the number of arithmetic operations needed by Algorithm 3.1.

Remark 3.11 The operation count for Step 5 assumes that the points f.,... , ZN} are rea-
sonably uniformly distributed. An adaptive version of this algorithm is described in Section 4,
and is capable of handling highly non-uniform distributions while preserving computational
efficiency and accuracy.

19

4 The Adaptive FMM in One Dimension

The algorithms of the previous section have one drawback: their operation count is quite sensi-
tive to the distribution of points, and they become inefficient for highly non-uniform distribu-
tions. We now describe an adaptive version of Algorithm 3.2 which overcomes this deficiency, its
complexity being O(N) independently of the spacing of the nodes. This versatility is achieved
by using different levels of subdivision for different parts of the computational domain. An in-
teger s is fixed, and at each level of refinement, we subdivide only those intervals which contain
more than s points. At each level, then, a list of non-empty subintervals is maintained whose
members are the result of the selective subdivision of intervals at the previous level. This policy
eliminates the inefficiency of the non-adaptive version, where, at the finest level of subdivision,
we may encounter intervals with very few or very many points. In the non-adaptive version,
each interval has two nearest neighbors of the same size, whereas in the adaptive version, in-
tervals axe permitted to have neighbors of differing size. Figure 3 depicts a subdivision of the
computational domain for a non-uniform distribution of points.

Remark 4.1 The idea of selectively subdividing the computational domain is taken from the
two dimensional adaptive FMM of [4]. This algorithm requires a somewhat more elaborate data
structure than its non-adaptive counterpart to account for interactions between all the different
sized boxes. The adaptive algorithm for problems in one dimension also needs additional
bookkeeping to keep track of interactions between all the different sized subintervals. However,
the simplified geometry of the real line suggests the use of a somewhat more efficient data
structure than that of the two dimensional case (see Figure 3).

Remark 4.2 It is clear that for a fixed machine precision e, only certain distributions of
points will yield meaningful results. For example, the points x, and X2 are indistinguishable if
I-2 - X1I < " fi1 + X21. To avoid such cases we will impose that the minimum distance between
two points must be greater than e - (b - a) where [a, b] is the computational domain. Under
this condition, the highest level of refinement of the computational domain is bounded above
by 1log 2(E)1.

4.1 Notation

We require some additional notation for the description of the adaptive algorithm to supplement
that of Sections 3.2 and 3.4.

"* nleva will denote the level of finest subdivision of any part of the interval [-1, 11.

"* For a fixed precision, E, m = 1log 2(e)0 will denote the maximum level of refinement of the
interval [-1, 1] (see Remark 4.2).

"* I, will denote the set of non-empty subintervals at level 1, i.e. the set of subintervals at
level I resulting from the bisection of a larger interval at level I - 1.

"• If subinterval isub contains more than s points, it is called a parent subinterval, and
ilchild(isub) and irchild(isub) will denote its left child and its right child which are the

20

Level Subinterval Number

0

1 I 2

2 3 4 5 6

3 7 8 9 10 11 12

4 i13 i141

Interval Neighbor Child
Left Right Left Right

1 2 3 4
2 1 - 5 6

3 - 4 7 8
4 3 5 - -

5 4 6 9 10
6 5 - 11 12
7 8 - -

8 7 4 13 14
9 4 10 - -

10 9 11
11 10 12
12 11 -

13 7 14

14 13 4

Figure 3: Hierarchy of subintervals for non-uniform distribution.

21

subintervals resulting from its bisection. Otherwise, isub is a called a childless subinterval
and ilchild(isub) and irchild(isub) are set to 0.

" ilnbr(isub) and irnbr(isub) will denote the left and right neighbors for subinterval isub,
which are the smallest adjacent subintervals at the same level of refinement or a coarser
one.

"* i and 4 will be i-vectors denoting respectively the left and right far-field expansions
for subinterval i.

" TLP and 10 will be p-vectors denoting respectively the left and right local expansions for
subinterval i.

4.2 Description of the Algorithm

This section contains a detailed description and a complexity analysis of an adaptive version of
Algorithm 3.2.

Algorithm 4.1
Initialization Step
Comment [Geometrical preprocessing]
Comment [Input problem size, N, and a real number e > 0.1
Set size of Chebyshev expansions p = [- log 5(c)l, choose p, choose s and set maximum level of refine-
ment m = [og2(N/s)l.

h = {[-1, 01, [0, 111
do I = 1 , m while I, is non-empty

do isub E Ih
if isub contains more than s points then

Add ilchild(isub) and irchild(isub) to It+,.
else

ilchild(isub) = 0
irchild(isub) = 0

endif
enddo

enddo
nlevs = I
do I = L nlevs

do isub E Ih
if isub is not childless then

ilnbr(irchild(isub)) = ilchild(isub)
irnbr ilchiid(isub)) = irchild(isub)
if ilnbr(isub) is not childless then

ilnbr(ikhild(isub)) = irchild(ilnbr(isub))
else

ilnbr(ilchild(isub)) = ilnbr(isub)
endif
if irnbr(isub) is not childless then

22

irnbr(irchild(isub)) = ilchild(irnbr(isub))
else

irrabr(irchild(isub)) = irnbr(isub)
endif

endif
enddo

enddo

Step 1
Comment [Upward Pass]

do 1= nlevs,..., 1
do isub E Ii

if isub is a childless subinterval then
Form a fi-term far-field expansion OL
Form a f.-term far-field expansion t 6

else

IsR = MLL lehild(isub+ R irehild(isub)
,aub = lhljb) +l MR erchild(ijub)

endif
enddo

enddo

Step 2
Comment [Downward Pass]

do I = 1,...nlevs
do isub E It

if iaub is a childless subinterval then
Evaluate and add f. term local expansions * &+ 4

else

~ilch~id(isub) =SLRW b
~SR *L

srchild(is~u) -R isau

ilehild(isub) -L isub

if ilnbr(isub) is a childless subinterval then
Add contribution of OL V. to each point in iinbr(isub)irchild(is~u)

Add contribution of each point in ilnbr(istsb) to #L rcu~ub

else

~,lcsldiag) ='~ilc&ild(Siju) + TjL O'leh.id(ilnbr(isub))
.2rhLd~s = TL. .ý. TL. 4

irchid(isub) = ir hild(isub) 1 T I echild(Siflbr(isub)) -2 ilchild(sinbr(isub))

endif
if irnbr(isub) is a childless subinterval then

Add contribution ofO to each point in irnbr(isub)
Add contribution of each point iz. irnbr(isub) to *

else

=Ihl~ob ghl~j& + TI ' ild(irnbr(ijub)) + 2's~rchild(irnbr(isiu))
irchid(isub) sr child(isub) + , Orchmid(irnbr(isub))

endif

23

endif
enddo

enddo

Step 3
Comment [Direct Interactions]

do isub = 1,.., nsub
if isub is childless then

For each point in subinterval isub, compute interactions with
all other points in this subinterval and in adjacent childless
subintervals, and add to far-field values.

endif
enddo

Following is a complexity analysis of Algorithm 4.1. Before presenting a step-by-step break-
down of the operation counts, we need two lemmas. These lemmas provide upper bounds on
the numbers of subintervals which can be created by the process of selective subdivision.

Lemma 4.1 For any subdivision of the computational domain produced by Algorithm 4.1, the
number of childless intervals is bounded by

2.109 2 (1) .ŽiN (93)

Proof. Each parent interval at level I contains more than s points (otherwise it would not be
further subdivided). Therefore, the total number of parent intervals at level I is bounded above
by N/s. Each parent interval has two children by definition, so the number of childless boxes at
any level I is bounded above by 2N/s. The bound (93) follows from the fact that the number
of levels of subdivision is bounded above by 1og 2 (0/f) (see Remark 4.2). 0

Lemma 4.2 For any subdivision of the computational domain produced by Algorithm 4.1, the
total number of intervals is bounded by

Proof. The number of parent intervals at level I is bounded above by N/s. Each of these parent
intervals has two children, so the number of childless boxes at any level I is bounded above by
2N/s. Thus, the total number of intervals at all levels (childless and parent) is bounded by

log 2(1/1 . (N/s + 2N/s).

Following is a step-by-step breakdown of the operation counts of Algorithm 4.1.

24

Step Complexity Description
1 O(2f3N)+ Each point contributes to the left and right *-term far-field expansions

of the childless subinterval in which it lies.

O(4p 2mN/s) For each parent subinterval (there are at most mNis) we perform 4
P x P matrix-vector products.

2 O(2pN)+ We evaluate and add the left and right i-term local expansions for
each of the N points.

O(40 2mN/s)+ For each parent subinterval (there are at most mN/s) we perform 4
P x f matrix-vector products.

O(6f)2mN/s)+ For each parent subinterval (there are at most mN/s) we perform at
most 6 P x P matrix-vector products.

O(4pmN) For each parent subinterval (there are at most mN/s) we perform at
most 4 P x s matrix-vector products.

3 O(3Ns) Each of the yi interacts directly with those zk which lie in its own
subinterval and the two nearest neighbors. There are at most 3s of
these points Xk.

Total O(14p 2mN/s + 4pmN + 4pN + 3Ns)

Remark 4.3 We choose s t 2p, as in Algorithm 3.2 (see Remark 3.10). The above algorithm
then requires order

N. (llpm + lOp) (95)

arithmetic operations.

5 A Fast Algorithm for Polynomial Interpolation

In this section we return to the original problem of this paper: given a set of points {x1 ,. •., ZN}

and function values {fl,..., fN}, evaluate the unique interpolating polynomial at the points
yl,..., yN). Recall from (2) that the Lagrange interpolating polynomial defined by the formula

N N X
PN(X)=Efj ll X-Zk (96)

j=1 k=1
ki~i

can be rewritten in the form

N NN Pf' 1 (97)

k=1k
k~j

25

Furthermore,
NPN(YI) =rl 1:f'S (98)

=1/1J - XI

for I 1,..., n, where ri and sj are defined by the formulae

N
r= I(Y - Xk) = n(yj-zk), (99)

k-_1

and,
N N

8j r= j7J - k e h=k~ nX S (100)
k= 1k~j

Observation 5.1 Sums of the form E ln(X - Xk) can also be evaluated using the algorithms
of this paper (see Remark 3.3). The numbers {rg} and {sj} can therefore be computed in
O(Nlog(!)) operations according to (99) and (100).

Following is a description of an algorithm for the efficient evaluation of expressions of the
form (98).

Algorithm 5.1
Step Complexity Description
Init O(Nlog(.)) Compute the numbers {rg} and {sj}.
1 O(N) do j = 1,n

gj= f3 -sj
end do

2 O(N log(.)) Compute j - g,/(yj - zj) using Algorithm 4.1 (or Algorithm 3.2).
3 O(N) do I = 1,n

Pi = f .ri
end do

Total O(N log(!))

Remark 5.2 It is well known that the polynomial interpolant of a function is spectrally accu-rate when the function is tabulated at Chebyshev or Legendre nodes (which are clustered near
the interval ends), whereas the interpolation errors can be arbitrarily large when the function
is tabulated at general distributions of points (see, for example, [5], [14]). It is expected that
many practical applications of Algorithm 5.1 will assume nonuniformly spaced nodes which are
clustered near the extremities of the interval.

6 Applications in Numerical Integration and Differentiation
The fast polynomial interpolation algorithm of this paper can be applied to a variety of prob-lems. One such example is discussed in this section. Here we will consider the folowing problem:
given a set of points {x 1,.. ., ZN} and function values {ff,..., fNl, evaluate the integrals and

26

derivatives of the interpolating polynomial at the points {xk}. In other words, we wish to
compute

L7PN(x)dx and PN(xk) (101)

for k = 1,..., N, where PN is the interpolating polynomial for the function values {fk} at the
points {xk}, defined by the Lagrange formula

N N
PNOT) fj. lI - k (102)

j=l k=1 -

k~j

We will make use of the following lemma, which may be found in the appendix to [7]. This
lemma describes formulae for the integration and differentiation of Chebyshev expansions.

Lemma 6.1 Let PN be a polynomial given by a Chebyshev series

N-1

PN(x) - ak" Tk(x). (103)
k=O

Then, the integral of PN has a series expansion of the form

N
/] PN(t)dt = E bk . Tk(z), (104)

k=O

where

b = = -k " (ak-. - ak+1) for 2 < k < N,
1

b, = -.(2ao-a2), (105)

N
b0 = -2 -E(-1)J -bj,

j=-

and the derivative of PN has a series expansion of the form

d N-2
-PN(x) " : dk. Tk(x), (106)

L-=O

where

N
dk = E j.•., for l<k<N-2,

j=k+l
j+k odd
I N

do = 2 E j aj. (107)
j=1

j odd

27

Remark 6.1 It can be shown that the process of numerical differentiation via Chebyshev series
has a condition number proportional to N 2, whereas the process of numerical integration via
Chebyshev series has a condition number bounded by 2. Thus, numerical differentiation of this
type is not usually favored when large scale calculations are being performed. On the other
hand, numerical integration is virtually insensitive to problem size, and is a powerful tool in the
solution of certain classes of differential equations, for example (for a more detailed discussion,
see [91).

The two algorithms described below perform the integration and differentiation of the La-
grange interpolating polynomial of a function which is tabulated at nodes other than Chebyshev.
In these descriptions we wil assume that Xk E [-1,1] for k = 1,...,N, and that t,. . ., tN are
Chebyshev nodes of order N on the interval [-1, 1].

Algorithm 6.1
Step Complexity Description
1 O(N log(!)) Interpolate from {Zk} to {tk} using Algorithm 5.1.
2 O(N log N) Compute Chebyshev coefficients using fast cosine transform.
3 O(N) Integrate Chebyshev series using (105).
4 O(N log N) Evaluate new series at Chebyshev nodes using fast cosine transform.
5 O(Nlog(!)) Interpolate from {tk} to {zf} using Algorithm 5.1.
Total O(N - log N + N . log(.))

Algorithm 6.2
Step Complexity Description
1 O(N log(!)) Interpolate from {zt} to {tk} using Algorithm 5.1.
2 O(N log N) Compute Chebyshev coefficients using fast cosine transform.
3 O(N) Differentiate Chebyshev series using (107).
4 O(N log N) Evaluate new series at Chebyshev nodes using fast cosine transform.
5 O(Nlog(•.)) Interpolate from {tk} to {Zk} using Algorithm 5.1.
Total O(N log N + N . log(!))

7 Implementation and Numerical Results

We have written FORTRAN implementations of the algorithms of this paper using double
precision arithmetic, and have applied these programs to a variety of situations.

Two technical details of our implementations appear to be worth mentioning here:

1. Each implementation consists of two main subroutines: the first is an initialization stage
in which the elements of the various matrices employed by the algorithms are precom-
puted and stored, and the second is an evaluation stage in which these matrices are
applied. Successive application of the linear transformations to multiple vectors requires
the initialization to be performed only once.

2. The parameters for each algorithm were chosen to retain maximum precision while min-
imizing the CPU time requirements. The values we used for the numerical examples of
this section were p = 16, l5 = 9, s = 16 and nlevs = log2(n/s).

28

Our implementations of the algorithms of this paper have been tested on the the Sun

SPARCstation 1 for a variety of input data. Four experiments are described in this section,
and their results are summarized in Tables 1-9. These tables contain error estimates and CPU
time requirements for the algorithms, with all computations performed in double precision
arithmetic.

The table entries are described below.

"* The first column in each table contains the problem size N, which was chosen to be a
power of 2 ranging from 64 to 4096 for each example.

"* The second and third columns in each table contain the relative 00-norm error Eo" and
the relative 2-norm error E 2 for each result.

"* The fourth and fifth columns in each table contain CPU timings for the initialization and
evaluation stages of the algorithm.

"* The sixth column in each of Tables 1-4 contains CPU timings for the corresponding direct
calculation.

"* The last column in each of Tables 1-4 contains CPU timings for an FFT of the same size.

Following are the descriptions of the experiments, and the tables of numerical results.
Example 1.
The purpose of this example is to demonstrate the performance of the one dimensional FMM
algorithms of this paper when applied to uniform distributions of points in the interval [-1, 11.
We considered the problem of evaluating the expressions

N
fj = N a(108)

for j = 1,.. . ,N, where the numbers {xk} and f /k} were chosen according to the formulae

2k - 1
Xk = -1 + 2 , (109)

N
yk = -1+ 2"-(k +0"1l' bk) -1(10

1 + N k) (110)

for k = 1,.. .,N, and {fk} were random numbers in [-1, 1]. In addition, {ak} were randomly
chosen from the interval [0,1]. This calculation was performed in three ways:

1. via Algorithm 3.1,

2. via Algorithm 3.2, and,

3. via a direct implementation of the formula (108).

29

Results of this experiment are presented in Tables 1 and 2.
Example 2.
Here we again considered the problem of evaluating (108), as in Example 1, but we replaced
the equispaced nodes with non-uniform distributions, and applied both the adaptive and non-
adaptive versions of the one dimensional FMM algorithms to this problem. The numbers {xk}
were chosen to be Legendre nodes of order N (i.e. the roots of the N-th order Legendre
polynomial) on the interval [-1,1], and {yk} were chosen to be Chebyshev nodes of order N
on the same interval. Once again, {ak} were randomly chosen from the interval [0, 11. This
calculation was performed in three ways:

1. via Algorithm 3.2,

2. via Algorithm 4.1, and,

3. via a direct implementation of the formula (108).

Results of this experiment are presented in Tables 3 and 4.
Example 3.
Here we considered the problem of evaluating the Lagrange interpolant of the function

f(z) = e-42 (111)

tabulated at Legendre nodes {fl,... , xN} on the interval [-1, 1]. The interpolant, defined by
the formula N N

PN(/) = f(zj) •I - Zk (112)j=1 k---I - '

kqj

was evaluated at Chebyshev nodes {fy,. . ., yZN} on the same interval. This calculation was
performed in three ways:

1. via the formula

-f -z) e- E:=,Ni In(,j-'k) (113)
PN(31,) = eE1 '"-x j=) " Z - zj

using Algorithm 5.1,

2. via a direct implementation of the formula

N N N

pN(31)k=ll(l _zk). E 1 , (114)
k~j

and,

3. via a direct implementation of the formula

PN(y1) = e _•fl,(3 -Zk) e " - (115)
j=3 Y31 - Xi

30

Results of this experiment are presented in Tables 5-7.

Remark 7.1 Table 6 only contains results for N :< 1024 because for larger problem sizes the
computation of the products in the expression (114) generates overflow and underflow errors
for this particular computer software and hardware.

Example 4.
In this example we tested the integration and differentiation algorithms of Section 6 on the
functions

f(x) - 4z2. (X2 - 1), (116)

and

g() jf(t)dt = (z2 - 1)2, (117)

which were tabulated at Legendre nodes of order N on the interval [-1, 1]. Algorithm 6.1 was
used to compute the integrals of f, and Algorithm 6.2 was used to compute the derivatives of
g at these nodes. Results of this experiment are presented in Tables 8 and 9.

The following observations can be made from Tables 1-9, and are in agreement with results
of our more extensive experiments for the particular computer architecture, implementations,
and values of N under consideration.

1. The algorithms permit high accuracy to be attained, and the observed errors are in
accordance with the theoretically obtained error bounds.

2. The CPU timings for each algorithm grow linearly, as expected, with the problem size N.

3. Algorithms 3.2 and 4.1 are about 10 times as costly as an FFT of the same size.

4. The algorithms break even with the corresponding direct methods at around N = 32 if

the initialization time is ignored, and at about N = 512 if it is included.

5. The evaluation stage for Algorithm 3.1 is approximately 50 percent slower than the evalua-
tion stage for Algorithm 3.2, as expected (see Remark 3.10). However, if the initialization
times are included, Algorithm 3.1 is more than twice as fast as Algorithm 3.2. Thus,
Algorithm 3.1 should be used whenever the linear transformation of this example is to be
applied to a single vector, and Algorithm 3.2 should be used whenever the same linear
transformation is to be applied to many different vectors.

6. Tables 3 and 4 indicate that the evaluation stage of the adaptive algorithm is only about

30 percent faster than the non-adaptive one for Legendre nodes. These nodes were chosen
because functions tabulated there are very well approximated by their polynomial inter-
polants (see Remark 5.2). For highly non-uniform distributions, however, the adaptive
algorithm will be significantly faster.

7. It is apparent from Tables 6 and 7 that the first of the direct methods used in Example 3

is the more accurate and more efficient of the two. However, we could not use this method
for values of N larger than 1024 due to numerical instability (see Remark 7.1).

31

N Errors Timings (sec.)
E_ E2 Init. Eval. Direct FFT

64 0.176 E-14 0.192 E-14 0.04 0.017 0.02 0.001
128 0.289 E-15 0.631 E-15 0.07 0.043 0.08 0.002
256 0.719 E-15 0.133 E-14 0.13 0.101 0.34 0.005
512 0.888 E-16 0.649 E-15 0.27 0.225 1.34 0.012
1024 0.104 E-14 0.104 E-14 0.48 0.465 5.37 0.026
2048 0.176 E-14 0.145 E-14 0.94 0.958 21.82 0.059
4096 0.321 E-14 0.330 E-14 1.93 1.953 87.79 0.132

Table 1: Example 1, Numerical Results for Algorithm 3.1.

N Errors Timings (sec.)
E. E2 Wit. Eval. Direct FFT

64 0.204 E-14 0.298 E-14 0.22 0.012 0.02 0.001
128 0.351 E-15 0.560 E-15 0.32 0.030 0.08 0.002
256 0.998 E-15 0.332 E-14 0.49 0.070 0.34 0.005
512 0.517 E-15 0.553 E-14 0.94 0.147 1.34 0.012
1024 0.944 E-15 0.679 E-14 1.71 0.306 5.37 0.026
2048 0.190 E-14 0.955 E-14 3.40 0.630 21.82 0.059
4096 0.401 E-14 0.328 E-13 6.58 1.283 87.79 0.132

Table 2: Example 1, Numerical Results for Algorithm 3.2.

32

N Errors Timings (sec.)
E._ E2 Init. Eval. Direct FFT

64 0.813 E-15 0.202 E-14 0.29 0.012 0.02 0.001
128 0.612 F ' , 0.180 E-14 0.39 0.033 0.08 0.002
256 ')3 E-i5 0.197 E-14 0.63 0.079 0.34 0.005
512 L .5 E-15 0.203 E-14 1.12 0.176 1.34 0.012
1024 0.108 E-14 0.588 E-14 2.06 0.378 5.32 0.026
2048 0.287 E-14 0.111 E-13 4.09 0.795 21.58 0.059
4096 0.323 E-I. 0.892 E-14 8.05 1.727 88.71 0.132

Table 3: Example 2, Numerical Results for Algorithm 3.2.

N Errors Timings (sec.)
E.o E2 Iit. Eval. Direct FFT

64 0.746 E-15 0.171 E-14 0.32 0.012 0.02 0.001
128 0.758 E-15 0.216 E-14 0.50 0.032 0.08 0.002
256 0.146 E-14 0.316 E-14 0.72 0.071 0.34 0.005
512 0.325 E-14 0.897 E-14 1.15 0.145 1.34 0.012
1024 0.128 E-13 0.264 E-13 2.02 0.295 5.32 0.026
2048 0.700 E-14 0.211 E-13 3.88 0.606 21.58 0.059
4096 0.775 E-14 0.318 E-13 7.50 1.209 88.71 0.132

Table 4: Example 2, Numerical Results for Algorithm 4.1.

33

N Errors Timings (sec.)
E_ _ E 2 Init. Eval.

64 0.351 E-13 0.330 E-13 0.44 0.012
128 0.542 E-13 0.453 E-13 0.74 0.032
256 0.628 E-13 0.340 E-13 1.30 0.072
512 0.877 E-13 0.459 E-13 2.49 0.147
1024 0.136 E-12 0.497 E-13 4.97 0.299
2048 0.160 E-12 0.555 E-13 10.30 0.611
4096 0.204 E-12 0.692 E-13 20.99 1.239

Table 5: Example 3, Numerical Results for Algorithm 5.1.

N E£. E2 Timings (sec.)
64 0.134 E-14 0.789 E-15 0.04
128 0.222 E-14 0.126 E-14 0.14
256 0.688 E-14 0.263 E-14 0.58
512 0.161 E-13 0.598 E-14 2.33
1024 0.318 E-13 0.105 E-13 9.52
2048 - - -

4096 - - -

Table 6: Example 3, Numerical Results for Direct Method 1.

N E£o E2 Timings (sec.)
64 0.740 E-14 0.433 E-14 0.14
128 0.266 E-13 0.141 E-13 0.54
256 0.976 E-13 0.319 E-13 2.19
512 0.198 E-12 0.951 E-13 8.70
1024 0.619 E-12 0.295 E-12 34.92
2048 0.199 E-11 0.789 E-12 141.84
4096 0.588 E-11 0.218 E-11 567.92

Table 7: Example 3, Numerical Results for Direct Method 2.

34

N Errors Timings (sec.)
E.o E2 Init. Eval.

64 0.766 E-13 0.384 E-13 0.90 0.031
128 0.135 E-12 0.419 E-13 1.48 0.077
256 0.309 E-12 0.529 E-13 2.62 0.155
512 0.383 E-12 0.637 E-13 5.03 0.329
1024 0.268 E-12 0.596 E-13 10.01 0.661
2048 0.566 E-12 0.729 E-13 20.36 1.325
4096 0.683 E-12 0.102 E-12 40.50 2.651

Table 8: Example 4, Numerical Results for Algorithm 6.1.

N Errors Timings (sec.)
E.o E2 hnit. Eval.

64 0.101 E-10 0.225 E-11 0.94 0.032
128 0.520 E-10 0.890 E-11 1.53 0.079
256 0.221 E-09 0.320 E-10 2.71 0.164
512 0.348 E-08 0.338 E-09 4.98 0.331
1024 0.272 E-07 0.193 E-08 10.04 0.716
2048 0.190 E-06 0.960 E-08 20.85 1.309
4096 0.801 E-06 0.528 E-07 40.90 2.621

Table 9: Example 4, Numerical Results for Algorithm 6.2.

35

8. Tables 8 and 9 show rapidly growing c-rors for spectral differentiation, but not for spec-
tral integration, demonstrating the well known difference in stability between these two
processes (see Remark 6.1) Timings for the two methods are similar, as expected.

9. The initialization stage is more costly than the evaluation stage for all of the algorithms.
Implementing the algorithms in two stages gives considerable time savings whenever the
same linear transformation is to be applied to multiple vectors.

8 Conclusions and Generalizations

In this paper, -ie have described a collection of algorithms which includes:

1. efficient versions of the Fast Multipole Method in one dimension,

2. a fast algorithm for polynomial interpolation on the line, and

3. fast algorithms for the integration and differentiation of functions tabulated at nodes
other than Chebyshev.

The number of arithmetic operations required by each algorithm is proportional to either N or
N -log N, where the constant of proportionality depends on the desired accuracy.

Several obvious generalizations of the results of this paper are discussed below.

1. The algorithms described in Sections 3 and 4 are all designed for evaluating sums of the
form

N
gT) k (118)f~~z) = - Xk"

k=1

However, they can be modified to evaluate expressions of a more general form, given by
the formula

N
f(X)- 1. ak -.O(X- zk), (119)

k=1

where 46 is singular at 0 but smooth everywhere else. Examples of functions with this
property include O(z) = log(x) and O(x) z- 11x 2 ' which are readiiy obtained by integrating
and differentiating the expression (64). Another example of interest is O(z) = 1/ tan(x)
which arises in the formulation of the trigonometric interpolation problem. This case is
currently being investigated, and results will be reported at a later date.

While the algorithmic procedures for different kernels 4 will be virtually identical, differ-
ent sets of formulae will be needed for the manipulation of the Chebyshev far-field and
local expansions which are required by the algorithms. These formulae are obtained by
constructing analogs of Theorems 2.5, 2.7, 2.8, 2.9 and 2.10 for the particular function 0.

2. The problems considered in this paper all involve the evaluation of an N-term series at N
points. Straightforward modifications to the algorithms of this paper will allow the effi-
dent evaluation of these N-term series at M points, where M 5 N. These modifications
have been implemented.

36

3. The use of the Singular Value Decomposition in the approximation of smooth functions
can be extended to many families of linear operators. Specifically, this approach may be
used to substantially accelerate the Fast Laplace Transform of [13] and the Fast Legendre
Transform of [2].

References

[1] B. ALPERT, G. BEYLKIN, R. COIFMAN AND V. ROKHLIN, Wavelet-like Bases for the Fast
Solution of Second-Kind Integral Equations, SIAM J. Sci. Stat. Comp., 14 (1993).

[2] B. ALPER.T AND V. ROKHLIN, A Fast Algorithm for the Evaluation of Legendre Ezpansions,
Technical Report 671, Yale Computer Science Department, 1988.

[3] G. BEYLKIN, R. COIFMAN AND V. ROKBLIN, Fast Wavelet Transforms and Numerical
Algorithms I, Comm. on Pure and Applied Mathematics, 44 (1991), pp. 141-183.

[4] J. CARRIER, L. GREENGARD AND V. ROKBLIN, A Fast Adaptive Multipole Algorithm for
Particle Simulations, SIAM J. Sci. Stat. Comp., 9 (1988), pp. 669-686.

[5] G. DAHLQUIST AND A. BJORCg, Numerical Methods, Prentice Hall Inc., Englewood Cliffs,
N.J., 1974.

[6] D. GOTTLIEB, M. Y. HUSSAINI AND S. ORSZAG, in Spectral Methods for Partial Differen-
tial Equations, edited by R. G. Voigt, D. Gottlieb and M. Y. Hussaini, SIAM, Philadelphia
PA, 1984, p.1.

[7] D. GOTTLIEB AND S. ORSZAG, Numerical Analysis of Spectral Methods, SIAM, Philadel-
phia PA, 1977.

[8] 1. S. GRADSHTEYN AND I. M. RYZHIK, Table of Integrals, Series and Products, Academic
Press Inc., 1980.

[9] L. GREENGARD, Spectral Integration and Two-Point Boundary Value Problems, Technical
Report 646, Yale Computer Science Department, 1988.

[10] L. GREENGARD AND V. ROKHLIN, A Fast Algorithm for Particle Simulations, J. Comp.
Phys., 73 (1987), pp. 325-348.

[11] M. Gu AND S. C. EISENSTAT, A Divide-And-Conquer Algorithm for the Symmetric Tridi-
agonal Eigenproblem, Technical Report 932, Yale Computer Science Department, 1992.

[12] M. Gu AND S. C. EISENSTAT, A Divide-And-Conquer Algorithm for the Bidiagonal SVD,
Technical Report 933, Yale Computer Science Department, 1992.

[13] V. ROKELIN, A Fast Algorithm for the Discrete Laplace Transformation, Journal of Com-
plexity, 4 (1988), pp. 12-32.

[14] J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, Springer Verlag, New
York, 1980.

37

